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This extended abstract describes efforts to infuse new planning and scheduling 
technologies into the Mars Science Laboratory Mission (MSL), a NASA Mars rover mission 
planned for launch in 2009.  Beginning in 2003, we engaged the MSL mission and the 
developers of the Mission Data System (MDS).  MDS is a software system that at the time 
was the MSL software baseline for both the ground and flight system. We briefly describe 
the tools that we integrated with MDS, the analysis or experience on previous missions that 
suggested each tool, and our successes in integrating these tools into a proof-of-concept 
uplink system we demonstrated in late 2004.   In 2004, MSL decided to fall back on the very 
successful Mars Exploration Rover (MER) mission’s software in order to save development 
cost, which has resulted in some re-direction of our on-going activities.   We briefly describe 
our new work to enhance the MER-based MSL software. 

I. Introduction 
nfusion of new software technology into flight projects has historically been quite difficult due to the conservative 
nature of flight project management. The conservative management stance is driven by the need to succeed in 

satisfying the missions’ stated objectives under strict cost and schedule constraints. Traditionally, missions have not 
had the luxury of being software technology trailblazers except where some unique mission requirement has forced 
new technology to be adopted. The task described in this report was put in place to try to overcome the software 
technology infusion hurdle by placing the software technologists in direct contact with a real mission and to a large 
extent, at the disposal of the mission. 

The Planning, Scheduling and Execution (PS&E) Technology Infusion task has as its charter to do technology 
identification, development and adaptation specifically to infuse PS&E technologies developed under “Intelligent 
Systems” funding into the Mars Science Laboratory mission. Intelligent Systems is a funding program that now lives 
within NASA’s Exploration Systems Mission Directorate (ESMD), and it has invested in a variety of autonomy 
technologies that should be useful to a number of human and robotic exploration missions.  The personnel on the 
task are PS&E technologists who are working within the project on a daily basis to anticipate mission needs and 
prepare selected IS developed PS&E technologies so that they can be made available to the MSL mission without 
risking either MSL mission development or operations costs or schedules. The task answers to mission PS&E needs 
first and foremost, providing solutions only to identified problems, not pushing any specific technology or 
technology agenda. It is in the very nature of early project phases to go through major design fluctuations as the 
project explores a huge trade-space to find the best combination of tools, procedures, technologies etc. to meet the 
mission objectives. This task has been part of that trade-space exploration, both helping identify trades and having to 
adjust to changes in plans as trade-space options were chosen or discarded. 

The rest of this paper describes the current state of the PS&E technology evaluation, selection and infusion 
process. The paper shows that the infusion team has been able to stay committed to its charter and has had a positive 
influence on the mission and is poised to stay with the mission through development and hand-off into flight. It is 
expected that this task will serve as a model for future well considered technology infusion tasks and that it will at 
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least partially address what has been a long standing problem in NASA software technology adoption for mission 
use. 

II. The Infused Technologies 
Figure 1 illustrates the tools we chose to 

integrate with MDS. It also illustrates the 
relationship of these tools to MDS’ abilities to 
generate a flexible plan from a set of goals (as 
indicated by the Ground MDS box) and to execute 
a flexible plan on-board a rover (as indicated by 
the Flight MDS box). A goal editor allows the user 
to graphically choreograph high level rover 
activities such as driving and picture taking.  The 
goals for the rover are then supplied to MDS, 
which elaborates them into a more detailed plan 
for coordinating the various subsystems of the 
rover to achieve the goals.  This plan is temporally 
flexible, in that it need not specify fixed times for 
each activity in the plan. Instead, it contains more 
general specifications of how the activities in a 
plan should be ordered, such as legal time ranges 
for the start of an activity or relationships between 
the start and end times of different activities.  
Before sending the flexible plan to the instance of 
MDS operating on the rover, we must determine if 
the plan is an acceptable implementation of our goals for the rover.  To assist in this determination, we first 
integrated a timeline visualization tool.  This allows operators to view the flexible plan as a traditional fixed-time 
sequence of activities.   In order to enable operators to gain an understanding of how the plan was likely to behave 
given uncertainty about the rover and its environment, we integrated a Monte Carlo evaluation system that 
automatically simulates and summarizes a large number of executions of the plan under a wide variety of possible 
operating conditions.   If the plan generated by MDS was not accepted by the operator, the first course of action is to 
adjust the goals given to MDS.  This puts the user in the situation, common to all automated planning systems, of 
having to determine why the original goals did not result in a desirable plan. We therefore integrated an inspection 
system that allows the user to explore how MDS generated a flexible plan from the goals and why some more 
desirable plan was not produced.  Each of these tools is described in more detail below.  We also performed 
significant computational benchmarking of the MDS system, which is not discussed further here (but details are 
available upon request from the authors). 

A. Goal Editor  
 
Figure 2 shows the goal editor, which allows the 

user to graphically select and choreograph high level 
rover activities.  Operation of a spacecraft at JPL 
typically involves an activity dictionary, which defines 
the validated activities that an operator may perform 
with the spacecraft.  The left-most panel of the goal 
editor contains a list of parameterized activities that 
may be selected for the rover.  In this example, they are 
high level goals such as transitioning to a new position 
relative to rover’s current position, or taking an image.  
Parameters include the position to be achieved and 
which of several cameras to be used, respectively.  The 
right side of the editor is a canvas upon which activities 
are arranged. Here we see two Transitioning_To goals 
that will move the rover.  Rather than specifying the 

Figure 2: The goal editor 
 

Figure 1: The demonstration system 
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exact times that each movement will begin, and risk the plan failing if the first drive takes longer than expected, 
MDS allows us to specify the timing or simply the ordering of activities with constraints. To ensure the second 
movement starts as soon as the first completes, but no sooner, we constrain the second Transitioning_To goal to 
begin at the same point in time where the first Transitioning_To ends.  On the editor canvas, this common point in 
time is the circle labeled TP2, and the arrows around TP2 represent the constraints on the goal start and end times.  
The goal editor allows us to graphically specify and visualize temporal constraints between the activities we have 
chosen for the rover.  The editor then submits our goals to MDS.  MDS elaborates each high level goal, such as 
transitioning the rover to a new position, into a set of lower-level activities that cause the rover to implement that 
goal. This elaboration process results in a much larger and more detailed set of activities and a much larger set of 
temporal constraints specifying the legal times at which each may start.  

B. Timeline visualization  
 
Ensuring that an elaborated set of goals will execute as 

human operators intend involves inspecting those goals 
using a timeline visualizer like the one shown in Figure 3.  
From top to bottom, this visualizer consists of a header 
with a time scale, a set of intervals associated with 
elaborated goals, and a set of constraints on different state 
variables representing spacecraft features.  This GUI was 
adapted from the ASPEN1 display in order to support 
visualization of arbitrary constraints from the grayed-out 
unconstrained variable to the textual description and the 
magenta lines denoting constraints to maintain knowledge 
of a state variable’s value.  

For instance, the bottom row denotes constraints on a 
sun sensor state variable. Since neither of the 
Transitioning_To goals elaborates to add a constraint on 
the sun sensor, this state variable has no constraints – resulting in it being completely grayed-out.  The next row up 
denotes the position&heading state variable, which has the original two Transitioning_To goals.  These goals 
elaborate into simultaneous goals on the rover’s 6 wheels, and the rows displayed above the position&heading state 
variable denote the low-level goals on the right rear wheel driving and steering motors.  Finally, for display purposes 
the GUI shows the earliest possible times that given constraints can start holding.  

C. Monte Carlo Evaluation 
The timeline visualization of a plan allows us to view one possible execution of a temporally flexible plan.  
However, due to the flexible nature of the plan and the inherent uncertainty about the conditions under which it will 
execute, we don’t know exactly how it will cause a rover to behave on Mars.   Monte Carlo evaluation of a 
temporally flexible plan helps us to estimate what the likely or worst case behavior of a plan will be, given some 
bounds on the conditions under which it will execute.   We believe this will allow rover operators to better 
understand how a plan is likely to behave, and to adjust it accordingly or explore alternatives. 
 
Consider the simple scenario shown in 
Figure 4.  As shown in the images in 
the top of the figure, we would like 
the rover to turn 90 degrees, drive 
forward 3 meters, and take a series of 
images.  The graph below indicates 
the amount of energy in the rover’s 
batteries as execution of the plan 
progresses.   This graph is meant to be 
suggestive rather than indicative of 
real values from any specific rover 
mission.  The initial energy stored in 
the battery comes from allowing the 
rover to nap, that is to not perform any 
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Figure 3: The timeline visualizer 

Figure 4: A simple rover scenario with energy usage 
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activities, while the solar panels charge the batteries. The energy level at the end of the plan is determined by factors 
such as how long the drive takes and the power usage over time by the wheel motors on the particular terrain the 
rover encounters.  The energy level must remain above some safe threshold during execution of the plan, or the plan 
will be aborted. 
 
Suppose we would like to know how much energy the rover should store up during its nap in order to ensure that the 
plan completes with a safe amount of energy in reserve.   We might also ask, if our estimates of how much power 
the wheel motors will require is off by 10%, does that significantly impact the likelihood the plan will succeed?  
Since scientists will be trying to squeeze as many competing science tasks onto the rover as possible, we may also 
ask about the abort probability of the last image we plan to take.  This image-taking activity may be aborted for lack 
of energy if we squeeze the rover’s napping period a small amount in order to accommodate other actions earlier in 
the day.   
 
The graph in Figure 5 illustrates how Monte Carlo simulation helps us to answer these types of analysis questions.  
The graph shows the initial energy stored before executing the simple scenario versus the estimated percentage of 
plans run with that initial energy that would complete their execution.  Each column was generated by running 200 
simulations of the plan with the specified initial energy. Each run chooses duration and power usage for each 
activity within a 10% standard deviation.  This is the basis of all Monte Carlo simulation systems: analysis of 
multiple simulations of a system with variations chosen from a statistical model of the system’s behavior.  We can 
use these simulations not only to estimate how likely a plan is to complete, but to record where in its execution each 
simulated run of the plan fails.  This allows us to explore, for example, how many of the images at the end of this 
plan are likely to be taken given a certain energy budget.   
 
The particular Monte Carlo simulation system we 
have integrated with MDS was originally a 
component of the PICo2 planning system. In 
addition to temporal and power variations, it can 
simulate other resources and inject failures into the 
simulated runs.  Through a file format adapter, it 
reads in a plan generated by MDS and converts it 
into a high level simulation.  This is not a physical 
simulation of the rover.  Conceptually, the 
simulation bookkeeps which activities must be 
completed before subsequent activities start, and 
how much energy has been used.  Nominal values 
for activity durations, power usage and the like can 
specified by engineers, determined from a high 
level simulation, or even measured on a test bed.  
The range of variation in these parameters that’s of 
interest for simulation is then provided by the user. 

D. PlanWorks 
PlanWorks3 allows a software developer or rover operator to understand how a flexible plan was generated by 

the planner within MDS, or other planners.  It can also reveal why a planner was unable to develop a plan for a set 
of goals.  PlanWorks captures the planning and scheduling decisions made by the planner, such as which lower-level 
activities a high level goal will be decomposed into, and what temporal constraints or fixed execution times will be 
assigned to those activities.   All of this information is then stored in an SQL database which can be queried to 
understand the process by which the planner developed the plan.  PlanWorks also supplies a set of specialized tools 
for graphically exploring the planning process.  For example, if the elaboration process in MDS was unable to 
generate a plan, one could view all of the goals that attempt to control the same property of the rover, such as its 
position. This would allow us to see, for example, if a mistake in our high level goals forced a drive activity of the 
rover to overlap with the stationary picture taking activity, which is not allowed.   We can use PlanWorks during 
development time to investigate whether a planner is implemented correctly, or during operations to determine 
whether the goals we have set forth are correct for the plan we are expecting to receive in return. 

 
 

Time 
0

3

35

84

98 100

0

20

40

60

80

100

120

8500 9000 9500 10000 10500 11000

Initial Energy (watt-secs)

%
 S

u
cc

es
s
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III. Summary and Conclusion 
 
In 2004, we created a connection to the MSL mission and the MDS software development team.  We 

demonstrated that it is possible to infuse new technology into a mission’s software baseline in a way that is 
minimally disruptive and quickly yields a proof of concept demonstration.  Our demonstration illustrates four 
different views of the mission tactical activity planning process.  These views focus on high level goals, flexible 
plans viewed as sequences, flexible plans viewed as descriptions of likely behavior, and a database of planner 
decisions, respectively.  In this demo assembled over the course of six months, each of these views is implemented 
by a separate tool which is not well integrated with the others.   To deploy these tools in an operational context, we 
would work to re-factor these tools into a set of components that can work together, and which interact with MDS 
through a unified API. 

 

 
 
As 2005 approaches, MSL has adopted the software from the very successful MER mission as its baseline.  The 

MER planning, sequence generation and uplink software contains functionality similar to that described above. It 
includes tools that perform automated or semi-automated planning, editors that allow users to specify temporal 
constraints between, and so on.  To an even greater extent than the MDS demonstration described here, the MER 
uplink software consists of many tools, resulting in multiple user interfaces for similar tasks, replicated functionality 
across tools, and multiple representations for the same information about the rover or the plan.   

 
The MSL mission’s software priority is containment of development costs, followed by capability improvements 

that focus on cost or risk reduction during development or mission operations. Given our charter to maintain an 
MSL mission focus, our task for 2005 is to aid the mission in unifying the many MER tools, interfaces and models 
to reduce the cost of developing and maintaining an MSL-adapted version of the software.  The MER uplink system 
has done an excellent job.  With the benefit of additional time, lessons learned, and some techniques from the 
Intelligent Systems program, we will work to demonstrate that the MER uplink software can be affordably and 
incrementally re-factored in a way that allows tools to share the same models, UI components, and implementation 
of common functionality.  We hope to demonstrate that the result can be lower costs for adapting the system to the 
specifics of the MSL mission, and a greater ability to add or modify features late in development of the mission, as 
is usually required.  We will work with teams both inside and outside MSL that are maintaining or revising the tools 
used in the MER uplink system to develop an integrated, proof-of-concept demo in 2005. 

 
 
 

Figure 6: A more integrated environment for operations.
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